The estimation of workspace for parallel kinematic machines (PKMs) typically relies on geometric considerations, which is suitable for PKMs operating under light load conditions. However, when subjected to heavy load, PKMs may experience significant deformation in certain postures, potentially compromising their stiffness. Additionally, heavy load conditions can impact motor loading performance, leading to inadequate motor loading in specific postures. Consequently, in addition to geometric constraints, the workspace of PKMs under heavy load is also constrained by mechanism deformation and motor loading performance.
This paper aims at developing a new heavy load 6-PSS PKM for multi-degree of freedom forming process. Additionally, it proposes a new method for estimating the workspace, which takes into account both mechanism deformation and motor loading performance. Initially, the geometric workspace of the machine is predicted based on its geometric configuration. Subsequently, the workspace is predicted while considering the effects of mechanism deformation and motor loading performance separately. Finally, the workspace is synthesized by simultaneously accounting for both mechanism deformation and motor loading performance, and a new index of workspace utilization rate is proposed. The results indicate that the synthesized workspace of the machine diminishes as the load magnitude and load arm increase. Specifically, under a heavy load magnitude of 6000 kN and a load arm of 200 mm, the utilization rate of the synthesized workspace is only 9.9% of the geometric workspace.