In this paper, we address the modeling, simulation, and control of a rotary inverted pendulum (RIP). The RIP model assembled via the MATLAB (Matlab 2021a)®/Simulink (Simulink 10.3) Simscape (Simscape 7.3)™ environment demonstrates a high degree of fidelity in its capacity to capture the dynamic characteristics of an actual system, including nonlinear friction. The mathematical model of the RIP is obtained via the Euler–Lagrange approach, and a parameter identification procedure is carried out over the Simscape model for the purpose of validating the mathematical model. The usefulness of the proposed Simscape model is demonstrated by the implementation of a variety of control strategies, including linear controllers as the linear quadratic regulator (LQR), proportional–integral–derivative (PID) and model predictive control (MPC), nonlinear controllers such as feedback linearization (FL) and sliding mode control (SMC), and artificial intelligence (AI)-based controllers such as FL with adaptive neural network compensation (FL-ANC) and reinforcement learning (RL). A design methodology that integrates RL with other control techniques is proposed. Following the proposed methodology, a FL-RL and a proportional–derivative control with RL (PD-RL) are implemented as strategies to achieve stabilization of the RIP. The swing-up control is incorporated into all controllers. The visual environment provided by Simscape facilitates a better comprehension and understanding of the RIP behavior. A comprehensive analysis of the performance of each control strategy is conducted, revealing that AI-based controllers demonstrate superior performance compared to linear and nonlinear controllers. In addition, the FL-RL and PD-RL controllers exhibit improved performance with respect to the FL-ANC and RL controllers when subjected to external disturbance.