Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
It is important and urgent to develop microwave low frequency band-pass and high frequency band-stop composite structures according to the needs of marine environment stealth weapons and equipment constructions. In this paper, a hollow hexagonal periodic structure is originally designed and the microwave band-pass and band-stop characteristics are investigated through the CST software simulation. As an optimization result, the numerical periodic structure parameters of hexagon ring are as follows: hexagon ring side length is 2.7 mm, line width 0.5 mm and gap width 0.15 mm, which shows a transmission of 83% at 0-2 GHz, and meanwhile a shielding efficiency of more than 10 dB at 8-18 GHz, thereby basically justifying our design target. On this basis, a new type of double-layers' composite frequency selective surface (FSS) structure which is composed of facial layer, hollow hexagon ring array 1, middle spacer layer, hollow hexagon ring array 2 and another facial layer stacked layer by layer, is creatively designed, which displays excellent microwave low frequency band-pass and high frequency band-stop performances compared with a single layer hollow hexagonal periodic structure, and by simulation and optimization, structural parameters of the upper FSS structure are as follows: hexagon ring side length is 3.0 mm, line width 0.5 mm, gap width 0.4 mm, and the lower FSS structure parameters are as follows: hexagon ring side length is 3.2 mm, line width 0.5 mm, gap width 1.0 mm; simulation results show itself that dual different layers' FSS design presents itself excellent low frequency band-pass and high frequency band-stop transformation characteristics, and the fast switch capacity is the basic foundation for both excellent low frequency band-pass and outstanding high frequency band-stop characteristics. The effects of wave incidence angle (TE) on electrical performance of dual-layers FSS are investigated and the results indicate that the designed dual-layers' FSS possesses a wide angle insensitivity in a range of 0-45°, which is especially beneficial to engineering applications. Finally the composite structures with dual-layers' FSSs are manufactured and verified, and high transmission up to 95.6% at 0-2 GHz frequency band and more than 10 dB shielding efficiency at 7.05-18 GHz are obtained, which strongly testifies our design idea and has important significance for developing the high performance band-pass and band-stop composite structure and new electromagnetic functional composite materials.
It is important and urgent to develop microwave low frequency band-pass and high frequency band-stop composite structures according to the needs of marine environment stealth weapons and equipment constructions. In this paper, a hollow hexagonal periodic structure is originally designed and the microwave band-pass and band-stop characteristics are investigated through the CST software simulation. As an optimization result, the numerical periodic structure parameters of hexagon ring are as follows: hexagon ring side length is 2.7 mm, line width 0.5 mm and gap width 0.15 mm, which shows a transmission of 83% at 0-2 GHz, and meanwhile a shielding efficiency of more than 10 dB at 8-18 GHz, thereby basically justifying our design target. On this basis, a new type of double-layers' composite frequency selective surface (FSS) structure which is composed of facial layer, hollow hexagon ring array 1, middle spacer layer, hollow hexagon ring array 2 and another facial layer stacked layer by layer, is creatively designed, which displays excellent microwave low frequency band-pass and high frequency band-stop performances compared with a single layer hollow hexagonal periodic structure, and by simulation and optimization, structural parameters of the upper FSS structure are as follows: hexagon ring side length is 3.0 mm, line width 0.5 mm, gap width 0.4 mm, and the lower FSS structure parameters are as follows: hexagon ring side length is 3.2 mm, line width 0.5 mm, gap width 1.0 mm; simulation results show itself that dual different layers' FSS design presents itself excellent low frequency band-pass and high frequency band-stop transformation characteristics, and the fast switch capacity is the basic foundation for both excellent low frequency band-pass and outstanding high frequency band-stop characteristics. The effects of wave incidence angle (TE) on electrical performance of dual-layers FSS are investigated and the results indicate that the designed dual-layers' FSS possesses a wide angle insensitivity in a range of 0-45°, which is especially beneficial to engineering applications. Finally the composite structures with dual-layers' FSSs are manufactured and verified, and high transmission up to 95.6% at 0-2 GHz frequency band and more than 10 dB shielding efficiency at 7.05-18 GHz are obtained, which strongly testifies our design idea and has important significance for developing the high performance band-pass and band-stop composite structure and new electromagnetic functional composite materials.
The coding periodic element is able to achieve coded reconfigurable electromagnetic (EM) responses by loading controllable electronic devices. In this work, an electronically controllable ultrathin planar periodic element structure in Ku band is implemented with one PIN diode. When the PIN diode turns ON or OFF by applying a proper biasing voltage, the resonant property of the element changes correspondingly, and hence a 180° phase difference between the two states is obtained. By optimizing the geometrical parameters, the reflection loss less than 0.5 dB is achieved by the proposed element. Therefore, using a proper biasing voltage control network, the PIN diodes of the proposed elements in a periodic arrangement are set at different states, which may be denoted by a binary string with "1"s or "0"s, and the whole array of elements operates as a binary coding periodic structure and exhibits controllable EM functionalities. In order to verify the coding property of the proposed element, the general principle for the biasing circuit design is given. An optimized biasing circuit is thoroughly studied using both field distribution analysis and equivalent circuit theory. Simulated results show that the specially designed biasing hardly affects the element reflection performance. Finally, a group of element prototypes are fabricated with welded PIN diodes and measured using the standard waveguide test method. The difference in mirror image between the waveguide test and the desired periodic arrangement is also discussed. The experimental results validate that the proposed element successfully achieves good coding EM performance by controlling its biasing voltage. The reflection loss of the element is very low, and well distributed phase difference between the two element states is observed. The simulation and experiment results agree well, and the deviation between them is analyzed in detail. The proposed element possesses distinctive favorable features such as coded controllable EM functionalities, simple structure and ultrathin profile, thus exhibiting the promising prospects in tunable stealth surface, agile antennas, and many other applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.