Despite many benefits, liposomes have still not realized their full potential as vehicles for drug delivery due to the morphological instability. Recently, liposomal nanohybrid cerasomes have been developed as novel drug nanocarriers based on organoalkoxysilane through a sol-gel reaction in combination with self-assembly process. The presence of polyorganosiloxane network on the surface imparts cerasomes higher morphological stability than conventional liposomes and the incorporation of liposomal bilayer structure into cerasomes boosts the biocompatibility in comparision with silica nanoparticles with similar size. Moreover, cerasomes are able to encapsulate various drug molecules and exhibit controlled drug release profile. In addition, cerasomes are easy to be conjugated with biomolecules through silane-coupler chemistry due to the silanols on the surface. Therefore, cerasomes are expected to be ideal drug delivery systems owning to the unique advantages. The present paper will briefly introduce the preparation and properties of cerasomes, followed by reviewing the progress of cerasomes for drug delivery.