This paper aims to study the maglev force and vibration attenuation characteristics of quasi-zero stiffness cruciform maglev isolators (CMIs). The maglev force and stiffness of CMIs were analytically computed based on equivalent charge theory, and the transfer function of the system was conducted. The effects of magnet geometry parameters and air gap on the maglev force, stiffness, and vibration transmission characteristics of the CMI system were revealed through parametric analyses. With the increase in magnet length and width, the maximum value of maglev force increases, but the displacement range of near-zero stiffness, amplitude, and phase of the system gradually decrease. With the increase in magnet height, the displacement range of near-zero stiffness increases, while the variation in the amplitude and phase of the system has minimal impact. Meanwhile, in the Halbach array, the height variation of the magnet at different positions has different impacts on the magnetic force. As the air gap increases, the maximum value of maglev force decreases, but the amplitude and phase gradually increase, and the displacement range of near-zero stiffness first rises and then decreases. Finally, an experimental study was carried out to test the vibration attenuation characteristics of CMIs, in which sinusoidal excitation, hammer strike excitation, and random excitation were applied.