This final report is organized into 2 sections. The first section (page 2) describes the multiinstitutional 13 month Rifle Colorado Field Campaign with an emphasis on the contributions to the campaign by the University of Idaho. The second section (page 16) of the report describes the overall accomplishments including a list of publications for the entire project. Sr, is co-precipitation in calcite. We have previously found that that nutrient addition can stimulate microbial ureolytic activity that this activity accelerates calcite precipitation and co-precipitation of Sr, and that higher calcite precipitation rates can result in increased Sr partitioning. We have conducted integrated field, laboratory, and computational research to evaluate the relationships between ureolysis and calcite precipitation rates and trace metal partitioning under environmentally relevant conditions, and investigated the coupling between flow/flux manipulations and precipitate distribution.A field experimental campaign conducted at the Integrated Field Research Challenge (IFRC) site located at Rifle, CO was based on a continuous recirculation design; water extracted from a down-gradient well was amended with urea and molasses (a carbon and electron donor) and re-injected into an up-gradient well. The goal of the recirculation design and simultaneous injection of urea and molasses was to uniformly accelerate the hydrolysis of urea and calcite precipitation over the entire inter-wellbore zone. The urea-molasses recirculation phase lasted, with brief interruptions for geophysical surveys, for 12 days followed by long-term monitoring which continued for 13 months. Following the recirculation phase we found persistent increases in urease activity (as determined from 14 C labeled laboratory urea hydrolysis rates) in the upper portion of the inter-wellbore zone. We also observed an initial increase (approximately 2 weeks) in urea concentration associated with injection activities followed by decreasing urea concentration and associated increases in ammonium and dissolved inorganic carbon (DIC) following the termination of injection. Based on the loss of urea and the appearance of ammonium, a first order rate constant for urea hydrolysis of 0.18 day -1 rate with an associate R f for ammonium of 11 were estimated. This rate constant is approximately 6 times higher than estimated for previous field experiments conducted in eastern Idaho. Additionally, DIC carbon isotope ratios were measured for the groundwater. Injected urea had a δ