Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
At many quarries for the extraction of building stone there is a problem of increased output of fines after all stages of crushing and grinding, which leads to a decrease in the economic performance of mining enterprises. The fine fraction is formed by the crushing / grinding of prefractured rock mass. Reducing the intensity and size of the prefracture zones will lead to a solution to the problem at hand. To determine the effect of explosive detonation properties on the degree of structural weakening of a rock mass, studies were conducted to measure the detonation velocity, stresses generated by a blast in the rock mass, as well as laboratory studies of microfracturing by X-ray computer microtomography. The size of the prefracture zones increases from 33 to 77 charge radii with increasing the detonation velocity from 2 to 5.2 km/s. The dependence of the number of microdefects (microfractures) generated by a blast on the velocity of explosive detonation takes the formof an exponent for the near zone and is linear for the distances far from the blast. According to the data of the experiments conducted at short distances (10R), the density of induced microfracturing N is within ≈5 thousand pcs/cm3, and with increasing the detonation velocity it increases to ≈13.8 thousand pcs/cm3. At medium (40R) and long (70R) distances, N increases from ≈750 to ≈2,400 pcs/cm3 and from 0 to ≈200 pcs/cm3, respectively. Using explosives with a reduced detonation velocity allows reducing the “surplus” impact on a rock mass and thus reducing the intensity of prefracture in the zone of controlled crushing during a blast. The study allowed obtaining quantitative parameters of the intensity and size of the prefracture zones, which compose the supplement to findings of historical studies on qualitative determination of prefracture.
At many quarries for the extraction of building stone there is a problem of increased output of fines after all stages of crushing and grinding, which leads to a decrease in the economic performance of mining enterprises. The fine fraction is formed by the crushing / grinding of prefractured rock mass. Reducing the intensity and size of the prefracture zones will lead to a solution to the problem at hand. To determine the effect of explosive detonation properties on the degree of structural weakening of a rock mass, studies were conducted to measure the detonation velocity, stresses generated by a blast in the rock mass, as well as laboratory studies of microfracturing by X-ray computer microtomography. The size of the prefracture zones increases from 33 to 77 charge radii with increasing the detonation velocity from 2 to 5.2 km/s. The dependence of the number of microdefects (microfractures) generated by a blast on the velocity of explosive detonation takes the formof an exponent for the near zone and is linear for the distances far from the blast. According to the data of the experiments conducted at short distances (10R), the density of induced microfracturing N is within ≈5 thousand pcs/cm3, and with increasing the detonation velocity it increases to ≈13.8 thousand pcs/cm3. At medium (40R) and long (70R) distances, N increases from ≈750 to ≈2,400 pcs/cm3 and from 0 to ≈200 pcs/cm3, respectively. Using explosives with a reduced detonation velocity allows reducing the “surplus” impact on a rock mass and thus reducing the intensity of prefracture in the zone of controlled crushing during a blast. The study allowed obtaining quantitative parameters of the intensity and size of the prefracture zones, which compose the supplement to findings of historical studies on qualitative determination of prefracture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.