This paper presents a model of a target tracking system assembled in a moving body. The system is modeled in time domain as a nonlinear system, which includes dry friction, backlash in gear transmission, control input tensions saturation, and armature current saturation. Time delays usually present in digital controllers are also included, and independent control channels are used for each motor. Their inputs are the targets angular errors with respect to the system axial axis and the outputs are control tensions for the motors. Since backlash in gear transmission may reduce the systems accuracy, its effects should be compensated. For that, backlash compensation blocks are added in the controllers. Each section of this paper contains a literature survey of recent works dealing with the issues discussed in this article.