This paper proposes a fully distributed control protocol that achieves time-varying group formation tracking for linear multiagent systems connected via a directed graph. The group formation tracking often leads to sub-formations especially when the leaders are placed far apart or they have separate control inputs. In the proposed approach, the followers are distributed into several subgroups and each subgroup attains the predefined subformation along with encompassing the leaders. Each subgroup can be assigned multiple leaders, contrary to the single-leader case considered in most existing literature, which makes the current problem nontrivial. When multiple leaders exist in a subgroup, the subformation attained by that subgroup keeps tracking a convex combination of the states of the leaders. A distributed adaptive control protocol has been introduced in this paper which uses only relative state information and, thus, avoids direct computation of the graph Laplacian matrix. Due to the virtue of this, the proposed scheme remains effective even when some of the agents get disconnected from the network due to sudden communication failure. An algorithm is provided to outline the steps to design the control law to attain time-varying group formation tracking with multiple leaders. Toward the end, a case study on multitarget surveillance operation is taken up to show an important application of the proposed adaptive control technique.