An industrial R&D programme is ongoing at SuperOx, aimed at improving 2G HTS wire performance in magnetic field. We introduce perovskite artificial pinning centres (APC) into the HTS layer matrix. In contrast to most studies described in the literature, we use the high rate production processing parameters and PLD equipment at SuperOx. This paper reports the results of Phase I of this programme. We fabricated 2G HTS wires by pulsed laser deposition of GdBCO films doped with 6%, 12% and 18% (molar) of BaSnO3 and 6% (molar) of BaZrO3, and compared their performance with an undoped reference sample. The depositions were carried out at production growth rates of 375, 560 and 750 nm min−1 by varying laser pulse frequency. BaZrO3 and BaSnO3 formed columnar semi-coherent nanoinclusions in the GdBCO film matrix. The average transverse size of the nanocolumns was about 5 nm, and their volume density correlated with the dopant concentration. All doped samples exhibited much lower angular anisotropy of in-field critical current and higher lift-factors than the undoped sample. Samples containing 6% BaSnO3 and deposited at the lower growth rates, had higher Ic than the undoped sample in the entire temperature range, in a wide range of magnetic field (B//c). The sample containing 6% BaZrO3 had higher Ic than the undoped sample at 20 and 4.2 K. These results are an encouraging start of our programme, as they show a positive impact of APC introduced into 2G HTS wires fabricated at production throughput. Phase II work will be focussed on maximising the improvements in specific temperature and field conditions, as well as on the verification of reproducibility of the improvements in production wires.