In this paper the testability of modified-Booth array multipliers for standard cells based design environments is examined for first time. In such cases the structure of the cells may be unknown, thus Cell Fault Model (CFM) is adopted. Two C-testable designs are proposed. A design for an Nx x Ny bits modified-Booth multiplier, which uses ripple carry addition at the last stage of the multiplication, is first proposed. The design requires the addition of only one extra primary input and 38 test vectors with respect to CFM. A second C-testable design is given using carry lookahead addition at the last stage which is the case of practical implementations of modified-Booth multipliers. Such a C-testable design using carry lookahead addition is for first time proposed in the open literature. This second design requires the addition of 4 extra primary inputs. One-level and two-levels carry lookahead adders, are considered. The C-testable design requires 61 test vectors for the former and 73 test vectors for the latter, respectively. The hardware and delay overheads imposed by both C-testable designs are very small and decrease when the size of the multiplier increases.