Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the present study, dynamic delayed detached eddy simulation is utilized to explore turbulent flow in T-junctions at a Reynolds number of ReD = 2.0 × 104. Three systems with varying corner cavity depth-to-diameter ratios (Ld/D = 1, 2, and 4) are examined to elucidate the interplay between unsteady flow and flow-induced noise. The analysis employs Lighthill's acoustic analogy to scrutinize surface dipole acoustic sources and their noise propagation characteristics. Coherent flow structures, characterized as wavepackets, are identified through spectral proper orthogonal decomposition, demonstrating consistent dominance in modes and dipole distributions across the systems. In the system with Ld/D = 1, wavepackets originating from the downstream region of the junction exhibit a pronounced flapping behavior attributed to the Kelvin–Helmholtz instability. Most dissipate with the mainstream flow, whereas a portion interacts with the wall, forming dipole acoustic sources. For systems with Ld/D = 2 and 4, the dominant mode transitions to the junction adjacent to the corner cavity, expanding continuously after separation until obliquely colliding with the wall, resulting in expanded dipole distributions. Mechanisms underlying flow-induced noise generation are unveiled by extracting transient vorticity fields within oscillation cycles. For shallow corner cavity depths (Ld/D = 1), periodic oscillatory vorticity shedding from the junction's sidewall significantly contributes to far-field sound pressure. As the cavity is deep enough to support one or more full recirculations of the fluid (Ld/D = 2 and 4), periodic vorticity shedding from the trailing edge directly impacts the wall above the junction, simultaneously suppressing flapping behavior at the leading edge and weakening overall dipole acoustic source intensity.
In the present study, dynamic delayed detached eddy simulation is utilized to explore turbulent flow in T-junctions at a Reynolds number of ReD = 2.0 × 104. Three systems with varying corner cavity depth-to-diameter ratios (Ld/D = 1, 2, and 4) are examined to elucidate the interplay between unsteady flow and flow-induced noise. The analysis employs Lighthill's acoustic analogy to scrutinize surface dipole acoustic sources and their noise propagation characteristics. Coherent flow structures, characterized as wavepackets, are identified through spectral proper orthogonal decomposition, demonstrating consistent dominance in modes and dipole distributions across the systems. In the system with Ld/D = 1, wavepackets originating from the downstream region of the junction exhibit a pronounced flapping behavior attributed to the Kelvin–Helmholtz instability. Most dissipate with the mainstream flow, whereas a portion interacts with the wall, forming dipole acoustic sources. For systems with Ld/D = 2 and 4, the dominant mode transitions to the junction adjacent to the corner cavity, expanding continuously after separation until obliquely colliding with the wall, resulting in expanded dipole distributions. Mechanisms underlying flow-induced noise generation are unveiled by extracting transient vorticity fields within oscillation cycles. For shallow corner cavity depths (Ld/D = 1), periodic oscillatory vorticity shedding from the junction's sidewall significantly contributes to far-field sound pressure. As the cavity is deep enough to support one or more full recirculations of the fluid (Ld/D = 2 and 4), periodic vorticity shedding from the trailing edge directly impacts the wall above the junction, simultaneously suppressing flapping behavior at the leading edge and weakening overall dipole acoustic source intensity.
Blind tees, as important junctions, are widely used in offshore oil and gas transportation systems to improve mixing flow conditions and measurement accuracies in curved pipes. Despite the significance of blind tees, their unsteady flow characteristics and mixing mechanisms in turbulent flow regimes are not clearly established. Therefore, in this study, Unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations, coupled with Explicit Algebraic Reynolds Stress Model (EARSM), are employed to explore the complex turbulent flow characteristics within blind-tee pipes. Firstly, the statistical flow features are investigated based on the time-averaged results, and the swirl dissipation analysis reveals an intense dissipative process occurring within blind tees, surpassing conventional elbows in swirling intensity. Then, the instantaneous flow characteristics are investigated through time and frequency domain analysis, uncovering the oscillatory patterns and elucidating the mechanisms behind unsteady secondary flow motions. In a 2D-length blind tee, a nondimensional dominant frequency of oscillation (Stbt = 0.0361) is identified, highlighting the significant correlation between dominant frequencies inside and downstream of the plugged section, which emphasizes the critical role of the plugged structure in these unsteady motions. Finally, a power spectra analysis is conducted to explore the influence of blind-tee structures, indicating that the blind-tee length of lbt = 2D enhances the flow-mixing conditions by amplifying the oscillation intensities of secondary flow motions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.