This paper discusses characteristic multidisciplinary issues related to quiet short takeoff and landing for civil transport aircraft with a typical short to medium range mission. The work reported here is focussing on the noise aspects and is embedded in the collaborative research centre CRC880 in Braunschweig, Germany. This long term aircraft research initiative focusses on a new transport aircraft segment for operation on airports with shorter runway length in commercial air transport. This calls for a community-friendly aircraft designed for operations much closer to the home of its passengers than today. This scenario sets challenging, seemingly contradictory aircraft technology requirements, namely those for extreme lift augmentation at low noise. The Research Centre CRC880 has therefore devised a range of technology projects that aim at significant noise reductions and at the generation of efficient and flexible high lift. The research also addresses flight dynamics of aircraft at takeoff and landing. Two companion papers, reporting about the research in the field of "Efficient high lift" 1 and "Flight dynamics" 2 complete the presentation of the CRC880. It is envisaged that in general significant noise reduction-compared to a reference turbofan driven aircraft of year 2000 technology-necessarily requires component noise reduction in combination with a low noise a/c concept. Results are presented from all the acoustics related projects of CRC880 which cover the aeroacoustic simulation of the source noise reduction by flow permeable materials, the characterization, development, manufacturing and operation of (porous) materials especially tailored to aeroacoustics, new UHBR turbofan arrangements for minimum exterior noise due to acoustic shielding as well as the prediction of jet noise vibration excitation of cabin noise by UHBR engines compared to conventional turbofans at cruise.