In the present study, a broad negative refractive index (NRI) performance is achieved in the terahertz frequency range (0.6-0.9 THz) through the design of multi-layered fishnet metamaterial (FMM). Herein, the conventional fishnet structure is modified by smoothing the sharp corners to reduce the electric field concentration and improve NRI. At corner radius, r = 30 µm, an effective refractive index of −11.14 is achieved with lower electric field concentration at the corners. A multilayer structure of up to 40 layers is studied to achieve a broad NRI frequency response. The frequency band of NRI response is improved from 0.034 THz for a single layer structure to 0.178 THz for 28 layer structure, almost 6 times the original bandwidth. With the increase in the number of layers, the improvement in NRI and Figure of Merit (FOM) is observed, and maximum NRI and FOM values of −87.5 and 12.67 are achieved at 28 layers. This multilayer broadband design can surpass tunable response of available electro-optic materials. With an optimal combination of NRI and FOM, the presented multilayer approach can achieve a low-loss, broadband performance.