Biomedical applications of ultrasound have experienced tremendous growth over the past 50 years. Early work in thermal therapy and surgery soon was followed by diagnostic imaging and Doppler. Because patient safety was an important issue from the beginning, the study of methods for measuring exposure levels, and their relationship to possible biological effects, paralleled the growth of the various therapeutic and diagnostic techniques. The diverse conditions of use have presented a range of exposure measurement challenges, and the sensors and techniques used to evaluate ultrasound fields have had to evolve as new or expanded clinical applications have emerged. In this paper some of the more notable of these developments are presented and discussed. Topics covered include devices and techniques, methods of calibration, progress in standardization, and current problem areas, including the effects of nonlinear propagation. Some early methods are described, but emphasis is given to more recent work applicable to present and future uses of ultrasound in medicine and biology.