Since the intricate anatomical structure of the craniomaxillofacial region and the limitation of surgical field and instrument, the current surgery is extremely of high risk and difficult to implement. The puncturing operations for biopsy, ablation, and brachytherapy have become vital method for disease diagnosis and treatment. Therefore, a craniomaxillofacial surgery robot system was developed to achieve accurate positioning of the puncture needle and automatic surgical operation. Master-salve control and "kinematic + optics" hybrid automatic motion control based on navigation system, which is proposed in order to improve the needle positioning accuracy, were implemented for different processes of the operation. In addition, the kinematic simulation, kinematic parameters identification, positioning accuracy experiment (0.56 ± 0.21 mm), and phantom experiments (1.42 ± 0.33 mm, 1.62 ± 0.26 mm, and 1.41 ± 0.30 mm for biopsy, radiofrequency, and brachytherapy of phantom experiments) were conducted to verify the feasibility of the hybrid automatic control method and evaluate the function of the surgical robot system.