We present a quasi-Yagi antenna mounted on a periodic surface for a wearable UHF RFID reader operating in the UHF RFID frequency band centered at 915 MHz. The periodic surface was cooptimized with the antenna to enhance the launching of surface waves to enable the end-fire radiation along the forearm so that a user can identify objects by pointing her/his hand towards them. In addition to the radiation pattern modification, the ground plane of the periodic surface serves the second purpose of isolating the antenna from the human body. We optimized the antenna in a full-wave EM simulator using a simplified cylindrical model of the forearm and in the simulation, it achieved the end-fire directivity of 5.9 dBi along the forearm. In the wireless testing, the quasi-Yagi antenna provided the read range of 3.8 m for a typical UHF RFID tag having 0 dBi gain when the reader's output power was 32 dBm that corresponds with EIRP = 0.56 W and SAR = 0.191 W/kg in our simulations. Considering both, the RFID emission regulations with EIRP = 3.28 W or 4 W and the SAR limit of 1.6 W/kg averaged over 1 gram of tissue, the read range could be further enhanced for reader units with higher output power.INDEX TERMS Wearable antenna, Yagi antenna, surface wave antenna, periodic surface, UHF RFID, wireless body-area systems.