In this paper, physically-based simulations are carried out to investigate and design uni-traveling carrier photodiode (UTC-PD) for high-power sub-terahertz wave generation at zero-and low-bias operation. The reliability of the physically-based simulation is demonstrated by comparing with our experimental result. Both the bandwidth and RF output power of the proposed UTC-PD is significantly improved by careful design the built-in electric field distribution under high-power input. For the optimized UTC-PD with the mesa diameter of 5 μm, its 3dB bandwidth large than 100 GHz even if the photocurrent reaches 6 mA under zero-bias operation. The device can reach a high bandwidth of 92.4 GHz, 105 GHz, and 119.5 GHz under the reverse bias of 0.5 V, 1 V, and 2 V, respectively, even the input photocurrent as high as 18.2 mA. The peak output-power of the device has enhanced at least 7 dB even at 170 GHz and zero-or low-bias operation. Besides, a novel design of mushroom-mesa UTC-PD (MM-UTC-PD) is proposed which with 4.3% improved high-speed performance. The MM-UTC-PD can trade-off between the external quantum-efficiency and bandwidth when miniaturized junction size is required.