The use of curvilinear fibre paths to develop variable stiffness laminates is now recognised as a promising technique offering great potential for performance improvements over conventional 'straight fibre' laminates. Its manufacture is feasible by fibre placement technologies, such as automated fibre placement. However, these technologies present a set of limitations that need to be included in the design to guarantee the manufacturability and quality of the composite laminates. Although this approach experiences an increasing interest from the specialised literature, most of the works completed overlook the manufacturing reality and, as a result, variable stiffness laminates are not used in industry. This work aims to provide a review of the State-of-the-Art on design for manufacture of variable stiffness in order to highlight the current gaps and research needs. As a conclusion, tools for analysis of the effect of manufacturing defects, manufacturing optimisation of gaps/overlaps or cycle time and the systematic integration of manufacturing constraints in design, are the main challenges that will be faced in the future to be able to exploit the potential of this advanced tailoring technique.