An angle-ply laminated plate is optimized with the objective of minimizing the weight of the plate taking into account uncertainties in the multiple transverse loads. The weight is proportional to the laminate thickness which is minimized subject to deflection and buckling constraints under the least favourable loading with the ply angles taken as design variables. The convex modelling approach is employed to analyse the uncertain loading with the uncertain quantities allowed to vary arbitrarily around their average values subject to the requirements that these variations are bounded in L2 norm and represented by a finite number of eigenmodes. The effect of uncertainty on the optimal design is investigated quantitatively. It is shown that the minimum weight increases with increasing level of uncertainty and the optimal ply angles also depend on the level of uncertainty.