Axial light distribution modulation is widely applied in optical tweezers, hard-brittle material cutting, multilayer laser direct writing, etc. To generate arbitrary axial light distribution, the coordinate-transformation iteration (CTI) algorithm is presented. The CTI algorithm unifies equations in low and high numerical aperture (NA) scenarios, using the same iterative algorithm to produce phase computer-generated holograms. In a low NA scenario, twin-foci, flattop, and
sin
2
distributions have been achieved. In high NA scenarios, multirings, multifoci, and needle-like distributions have been realized in simulation with specific polarized incident beams. Since the CTI algorithm is inherently an efficient one-dimensional phase retrieval algorithm that is not limited by NA, this method has the potential to become a well-received solution for axial light distribution modulation.