Abstract-The article presents a new topology of the high-speed synchronous electrical machines with permanent magnets with the tooth-coil windings with a stator magnetic core made of amorphous alloys for prospective unmanned aerial vehicles. This is a multidisciplinary design algorithm with optimization elements, which are proposed to design such machines. Based on the proposed algorithm, calculations of several topologies were performed by using computer simulation methods. In addition, the analysis of the rotor dynamics as part of the turbojet engine of the unmanned aerial vehicle and the calculations of the mechanical rotor strength were performed. To minimize the eddy-current losses in permanent magnets, the multicriteria optimization of the slotted zone was carried out by using genetic algorithms. A cooling system was proposed, and thermal calculations were performed. To verify the proposed design algorithm and to evaluate the efficiency of the amorphous alloy, a full-sized 5 kW experimental sample with a rotational speed of 60,000 rpm was created. Results can be used to create new promising UAVs and to design electrical machines for other industrial applications.