1995
DOI: 10.1163/156939395x00235
|View full text |Cite
|
Sign up to set email alerts
|

Design of gratings and frequency selective surfaces using Fuzzy ARTMAP neural networks

Abstract: This paper presents a study of the Fuzzy ARTMAP neural network in designing cascaded gratings and frequency selective surfaces (FSS) in general. Conventionally, trial and error procedures are used until an FSS matches the design criteria. One way of avoiding this laborious process is to use neural networks (NNs). A neural network can be trained to predict the dimensions of the elements comprising the FSS structure, their distance of separation, and their shape required to produce the desired frequency response… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
5
0
1

Year Published

1997
1997
2017
2017

Publication Types

Select...
4
3
1

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(6 citation statements)
references
References 6 publications
0
5
0
1
Order By: Relevance
“…ART neural network models have added a series of new principles to the original theory and have realized these principles as quantitative systems that can be applied to problems of category learning, recognition, and prediction. Applications of unsupervised ART networks (Carpenter & Grossberg, 1987Carpenter, Grossberg, & Rosen, 1991) and supervised ARTMAP networks (Carpenter, Grossberg, Markuzon, Reynolds, & Rosen, 1992;Carpenter, Grossberg, & Reynolds, 1991) include a Boeing parts design retrieval system (Caudell, Smith, Escobedo, & Anderson, 1994), satellite remote sensing (Baraldi & Parmiggiani, 1995;Gopal, Sklarew, & Lambin, 1994), robot sensory-motor control (Bachelder, Waxman, & Seibert, 1993;Baloch & Waxman, 1991;Dubrawski & Crowley, 1994;Srinivasa & Sharma, 1996), robot navigation , machine vision (Caudell & Healy, 1994), 3D object recognition (Seibert & Waxman, 1992), face recognition (Seibert & Waxman, 1993), automatic target recognition (Bernardon and Carrick, 1995;Koch, Moya, Hostetler, & Fogler, 1995;Waxman et a!., 1995), medical imaging (Soliz & Donohoe, 1996), electrocardiogram wave recognition (Ham & Han, 1996;Suzuki, 1995), prediction of protein secondary structure (Mehta, Vij, & Rabelo, 1993), strength prediction for concrete mixes (Kasperkiewicz, Racz, & Dubrawski, 1994), signature verification (Murshed, Bortozzi, & Sabourin, 1995), tool failure monitoring (Ly & Choi, 1994;Tarng, Li, & Chen, 1994;Tse & Wang, 1996), chemical analysis from UV and IR spectra (Wienke, 1994), digital circuit design (Kalkunte, Kumar, & Patnaik, 1992), frequency selective surface design for electromagnetic system devices (Christodoulou, Huang, Georgiopoulos,...…”
Section: Art and Artmap Networkmentioning
confidence: 99%
“…ART neural network models have added a series of new principles to the original theory and have realized these principles as quantitative systems that can be applied to problems of category learning, recognition, and prediction. Applications of unsupervised ART networks (Carpenter & Grossberg, 1987Carpenter, Grossberg, & Rosen, 1991) and supervised ARTMAP networks (Carpenter, Grossberg, Markuzon, Reynolds, & Rosen, 1992;Carpenter, Grossberg, & Reynolds, 1991) include a Boeing parts design retrieval system (Caudell, Smith, Escobedo, & Anderson, 1994), satellite remote sensing (Baraldi & Parmiggiani, 1995;Gopal, Sklarew, & Lambin, 1994), robot sensory-motor control (Bachelder, Waxman, & Seibert, 1993;Baloch & Waxman, 1991;Dubrawski & Crowley, 1994;Srinivasa & Sharma, 1996), robot navigation , machine vision (Caudell & Healy, 1994), 3D object recognition (Seibert & Waxman, 1992), face recognition (Seibert & Waxman, 1993), automatic target recognition (Bernardon and Carrick, 1995;Koch, Moya, Hostetler, & Fogler, 1995;Waxman et a!., 1995), medical imaging (Soliz & Donohoe, 1996), electrocardiogram wave recognition (Ham & Han, 1996;Suzuki, 1995), prediction of protein secondary structure (Mehta, Vij, & Rabelo, 1993), strength prediction for concrete mixes (Kasperkiewicz, Racz, & Dubrawski, 1994), signature verification (Murshed, Bortozzi, & Sabourin, 1995), tool failure monitoring (Ly & Choi, 1994;Tarng, Li, & Chen, 1994;Tse & Wang, 1996), chemical analysis from UV and IR spectra (Wienke, 1994), digital circuit design (Kalkunte, Kumar, & Patnaik, 1992), frequency selective surface design for electromagnetic system devices (Christodoulou, Huang, Georgiopoulos,...…”
Section: Art and Artmap Networkmentioning
confidence: 99%
“…Por un lado, se aplican algunos sistemas de técnicas gráficas tomografía [9,10], así como aplicaciones usando ecuaciones de las integrales [11] , pero estos han tenido un éxito solo parcial, debido principalmente a la complejidad de los datos de campo, que contiene altos niveles de ruido causados por no homogeneizar los medios de acogida. Por otro lado, las técnicas basadas en redes neuronales (NN) que aprenden a adaptarse basándose en las experiencias recogidas en diferentes topologías [11][12][13][14][15][16][17] conocidas como neural network, se han propuesto para resolver el pr o blema del electromagnetismo y la inversión canónic a . Por ejemplo, un esferoide incrustado en un medio de acogida [17,18], y otras mejoras en relación con las formas geométricas más realistas para aplicaciones ingenieriles [18,19], aun incluyendo la consideración de un medio de acogida no homogénea [19,20].…”
Section: úLtimas Investigaciones Del Radar De Penetraciónunclassified
“…Moreover, the computation of the mapping is convenient and fast. Because NN is very suitable for modeling and optimization of complex electromagnetic systems that face CAD optimized process, it is widely used in electromagnetic field [14] [15] .…”
Section: Neural Networkmentioning
confidence: 99%