Renewable energy sources such as photovoltaic (PV) and wind energies are integrated into the grid due to their low global emissions and higher power conversion efficiency techniques. Grid-connected inverters are the core components of distributed generation networks. However, several harmonic current and voltage variations affect the performance of circuits in grid-connected networks. These issues can be easily resolved using passive filters, static vector generators, and dynamic energy filters (APFs). In higher-level units, the cost, dimensions, and weight of passive filters increase proportionally. The purpose of this research is to evaluate advanced APFs for reducing power switches and grid-connected weight, cost, and scale. Several studied APF inverter topologies, including single-phase, three-phase AC–AC, back-to-back, and common parameters, have been considered. Cost-effective solutions such as PV-based transformers based on APF, fewer inverters, multiple and multifunctional inverters, and wind-assisted conversion systems have been studied.