Soil organic matter (SOM) content is an important index to measure the level of soil function and soil quality. However, conventional studies on estimation of SOM content concerned about the classic integer derivative of spectral data, while the fractional derivative information was ignored. In this research, a total of 103 soil samples were collected in the Ebinur Lake basin, Xinjiang Uighur Autonomous Region, China. After measuring the Vis-NIR (visible and near-infrared) spectroscopy and SOM content indoor, the raw reflectance and absorbance were treated by fractional derivative from 0 to 2nd order (order interval 0.2). Partial least squares regression (PLSR) was applied for model calibration, and five commonly used precision indices were used to assess the performance of these 22 models. The results showed that with the rise of order, these parameters showed the increasing or decreasing trends with vibration and reached the optimal values at the fractional order. A most robust model was calibrated based on 1.8 order derivative of R, with the lowest RMSEC (3.35 g kg