Aminophylline (AMP) is a bronchodilator. The therapeutic and toxic doses are very close. Therefore, therapeutic drug monitoring (TDM) of AMP is essential in clinical practice. Microgels were synthesized by free radical precipitation polymerization. Silver@poly( N-isopropyl acrylamide) (Ag@PNIPAM) hybrid microgels were obtained by loading silver (Ag) nanoparticles into the three-dimensional network of the microgels by in situ reduction. The microgel is a three-dimensional reticular structure with tunable pore size, large specific surface area, and good biocompatibility, which can be used as a sorbent for solid-phase extraction (SPE) of target molecules in complex matrices and as a surface-enhanced Raman spectroscopy (SERS) substrate. We optimized the conditions affecting SERS enhancement, such as silver nitrate (AgNO3) concentration and SPE time, according to the SERS strategy of Ag@PNIPAM hybrid microgels to achieve label-free TDM for trace AMP in human serum. The results showed good linearity between the logarithmic concentration of AMP and its SERS intensity in the range of 1–1.1 × 102 µg/mL, with a correlation coefficient ( R2) of 0.9947 and a low detection limit of 0.61 µg/mL. The assay accuracy was demonstrated by spiking experiments, with recoveries ranging from 93.0 to 101.8%. The method is rapid, sensitive, reproducible, requires simple sample pretreatment, and has good potential for use in clinical treatment drug monitoring.