2018
DOI: 10.1016/j.apm.2017.11.023
|View full text |Cite
|
Sign up to set email alerts
|

Design of normalized fractional adaptive algorithms for parameter estimation of control autoregressive autoregressive systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
12
0

Year Published

2018
2018
2022
2022

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 31 publications
(12 citation statements)
references
References 60 publications
0
12
0
Order By: Relevance
“…For x>a,italicfr>1$$ x>a, fr>-1 $$, the fractional order derivative 49,50 for the function g(x)=xλ$$ g(x)={x}^{\lambda } $$ is given as: a Dxfrxλgoodbreak=normalΓ(λgoodbreak+1)normalΓ(λgoodbreak−italicfrgoodbreak+1)xλitalicfr.$$ {\kern0.01em }_a{D}_x^{fr}{x}^{\lambda }=\frac{\Gamma \left(\lambda +1\right)}{\Gamma \left(\lambda - fr+1\right)}{x}^{\lambda - fr}. $$ The objective function 46 for the BIP model is given as: J(n)goodbreak=E[]|e(n)|2goodbreak=|efalse(nfalse)|2,$$ J(n)=E\left[{\left|e(n)\right|}^2\right]={\left|e(n)\right|}^2, $$ where E()$$ E\left(\cdot \right) $$ represents an expectation operator, the estimation error e(n)$$ e(n) $$ is the difference between desired response y(n)$$ y(n) $$ and the estimated filter response truey^(n)$$ \hat{y}(n) $$, and it is writ...…”
Section: Proposed Auxiliary Model Based Normalized Fractional Adaptiv...mentioning
confidence: 99%
See 3 more Smart Citations
“…For x>a,italicfr>1$$ x>a, fr>-1 $$, the fractional order derivative 49,50 for the function g(x)=xλ$$ g(x)={x}^{\lambda } $$ is given as: a Dxfrxλgoodbreak=normalΓ(λgoodbreak+1)normalΓ(λgoodbreak−italicfrgoodbreak+1)xλitalicfr.$$ {\kern0.01em }_a{D}_x^{fr}{x}^{\lambda }=\frac{\Gamma \left(\lambda +1\right)}{\Gamma \left(\lambda - fr+1\right)}{x}^{\lambda - fr}. $$ The objective function 46 for the BIP model is given as: J(n)goodbreak=E[]|e(n)|2goodbreak=|efalse(nfalse)|2,$$ J(n)=E\left[{\left|e(n)\right|}^2\right]={\left|e(n)\right|}^2, $$ where E()$$ E\left(\cdot \right) $$ represents an expectation operator, the estimation error e(n)$$ e(n) $$ is the difference between desired response y(n)$$ y(n) $$ and the estimated filter response truey^(n)$$ \hat{y}(n) $$, and it is writ...…”
Section: Proposed Auxiliary Model Based Normalized Fractional Adaptiv...mentioning
confidence: 99%
“…When the input vector bold-italicx(n)$$ \boldsymbol{x}(n) $$ is divided with its norm in Equation (), the weight update equation of normalized AFLMS (NAFLMS) algorithm 46,47 is written as: truew^(n)goodbreak=truew^(ngoodbreak−1)goodbreak+[]μgoodbreak+μitalicfrnormalΓ(2goodbreak−italicfr)|truew^|1italicfr(ngoodbreak−1)e(n)bold-italicx(n)xfalse(nfalse).$$ \hat{\boldsymbol{w}}(n)=\hat{\boldsymbol{w}}\left(n-1\right)+\left[\mu +\frac{\mu_{fr}}{\Gamma \left(2- fr\right)}{\left|\hat{\boldsymbol{w}}\right|}^{1- fr}\left(n-1\right)\right]\circ \frac{e(n)\boldsymbol{x}(n)}{\left\Vert \boldsymbol{x}(n)\right\Vert }. $$ Introducing the adjustable gain parameter ω$$ \omega $$ in the same way, the NMFLMS algorithm is given as: truew^(n)goodbreak=truew^(ngoodbreak−1)goodbreak+[]ωμgoodbreak+(1goodbreak−ω)μfrnormalΓ(2goodbreak−italicfr)|truew^|1italicfr(ngoodbreak−1)e…”
Section: Proposed Auxiliary Model Based Normalized Fractional Adaptiv...mentioning
confidence: 99%
See 2 more Smart Citations
“…The modeling of industrial systems plays a crucial role in system analysis and control 1,2 . System identification is essential for constructing the mathematical models of systems, 3,4 and parameter estimation is the foundation of system identification 5,6 . The study of new parameter estimation methods has become the eternal theme of system control 7,8 .…”
Section: Introductionmentioning
confidence: 99%