Cloud computing revolutionizes fast-changing technology. Companies' computational resource use is changing. Businesses can quickly adapt to changing market conditions and operational needs with cloud-based solutions' adaptability, scalability, and cost-efficiency. IT operations and service delivery have changed due to widespread computational resource access. Cloud computing efficiently allocates resources in cloud environments, making it crucial to this transformation. Resource allocation impacts efficiency, cost, performance, and SLAs. Users and providers can allocate cloud resources based on workloads using elasticity, scalability, and on-demand provisioning. IT economics and operational effectiveness have changed due to rapid and flexible resource allocation. Proactive versus reactive resource allocation is key to understanding cloud resource management challenges and opportunities. Reactive strategies allocate resources only when shortages or surpluses occur at demand. This responsive strategy often leads to inefficiencies like over- or under-allocation, which raises costs and lowers performance. Predictive analysis and workload forecasting predict resource needs in proactive resource allocation. Optimize resource use to avoid shortages and over-provisioning. Attention has been drawn to proactive predictive resource allocation. These methods predict resource needs using historical data, machine learning, and predictive analytics. Predictive strategies optimize resource allocation by considering future decisions. Reduced bottlenecks boost user satisfaction and lower operational costs. Matching resource distribution to workloads optimizes cloud resource management. Resource allocation prediction improves with deep learning. CNN, LSTM, and Transformer cloud resource forecasting algorithms are promising. New tools for accurate and flexible workload predictions have come from their ability to spot intricate patterns in historical data. This paper compares CNN, LSTM, and Transformer deep learning algorithms for cloud computing resource allocation forecasting. This study determines the best predictive accuracy and workload ada[1]ptability algorithm using Google Cluster Data (GCD). The study evaluates upgrading cloud computing resource allocation with the Transformer model. This study advances predictive resource allocation strategies, which can help cloud service providers and organizations improve resource utilization, cost-effectiveness, and performance in the face of rapid technological change.