Background: Polymeric drug delivery systems have been achieved great development in the last two decades. Polymeric drug delivery has defined as a formulation or a device that enables the introduction of a therapeutic substance into the body. Biodegradable and bio-reducible polymers make the magic possible choice for lot of new drug delivery systems. The future prospects of the research for practical applications has required for the development in the field. Main body: Natural polymers such as arginine, chitosan, dextrin, polysaccharides, poly (glycolic acid), poly (lactic acid), and hyaluronic acid have been treated for polymeric drug delivery systems. Synthetic polymers such as poly (2-hydroxyethyl methacrylate), poly(N-isopropyl acrylamide)s, poly(ethylenimine)s, dendritic polymers, biodegradable and bio-absorbable polymers have been also discussed for polymeric drug delivery. Targeting polymeric drug delivery, biomimetic and bio-related polymeric systems, and drug-free macromolecular therapeutics have also treated for polymeric drug delivery. In polymeric gene delivery systems, virial vectors and non-virial vectors for gene delivery have briefly analyzed. The systems of non-virial vectors for gene delivery are polyethylenimine derivatives, polyethylenimine copolymers, and polyethylenimine conjugated bio-reducible polymers, and the systems of virial vectors are DNA conjugates and RNA conjugates for gene delivery. Conclusion: The development of polymeric drug delivery systems that have based on natural and synthetic polymers are rapidly emerging to pharmaceutical fields. The fruitful progresses have made in the application of biocompatible and bio-related copolymers and dendrimers to cancer treatment, including their use as delivery systems for potent anticancer drugs. Combining perspectives from the synthetic and biological fields will provide a new paradigm for the design of polymeric drug and gene delivery systems.