Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The urgent need for greenhouse gas (GHG) emission reductions to mitigate climate change calls for accelerated biorefinery development and biochemical deployment to the market as structural or functional replacements for chemicals produced from fossil-derived feedstocks. This study evaluated the energy and environmental impacts of 15 biochemicals with clear near-term market potential and their fossil-based counterparts, when applicable, on a cradle-to-gate basis. Three of these chemicals are produced exclusively from biomass; eight are predominantly produced from fossil-derived feedstocks; and four are predominantly produced from biomass. For the 12 cases that can be produced from either feedstock, eight exhibited fossil energy consumption and GHG emission reductions when produced from biomass instead of fossil-derived feedstocks between 41%−85% and 35%−350%, respectively. Water consumption results were mixed because several of the biobased pathways consumed more water. Annually, replacing the predominantly fossil-fuel-based chemicals with biobased alternatives could avoid 120 MMT CO 2 e emissions and save 1,500 PJ of fossil energy. The potential of these chemicals as coproducts in integrated biorefineries was analyzed in terms of market, economics, and environmental effects with an emphasis on GHG emissions. Adipic acid, succinic acid, acrylic acid, propylene glycol, 1,4-butanediol, 1,3-butadiene, furfural, and fatty alcohol are promising coproduct candidates based on their low life-cycle GHG emissions.
The urgent need for greenhouse gas (GHG) emission reductions to mitigate climate change calls for accelerated biorefinery development and biochemical deployment to the market as structural or functional replacements for chemicals produced from fossil-derived feedstocks. This study evaluated the energy and environmental impacts of 15 biochemicals with clear near-term market potential and their fossil-based counterparts, when applicable, on a cradle-to-gate basis. Three of these chemicals are produced exclusively from biomass; eight are predominantly produced from fossil-derived feedstocks; and four are predominantly produced from biomass. For the 12 cases that can be produced from either feedstock, eight exhibited fossil energy consumption and GHG emission reductions when produced from biomass instead of fossil-derived feedstocks between 41%−85% and 35%−350%, respectively. Water consumption results were mixed because several of the biobased pathways consumed more water. Annually, replacing the predominantly fossil-fuel-based chemicals with biobased alternatives could avoid 120 MMT CO 2 e emissions and save 1,500 PJ of fossil energy. The potential of these chemicals as coproducts in integrated biorefineries was analyzed in terms of market, economics, and environmental effects with an emphasis on GHG emissions. Adipic acid, succinic acid, acrylic acid, propylene glycol, 1,4-butanediol, 1,3-butadiene, furfural, and fatty alcohol are promising coproduct candidates based on their low life-cycle GHG emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.