2022
DOI: 10.1016/j.mechmachtheory.2021.104650
|View full text |Cite
|
Sign up to set email alerts
|

Design of Single Degree-of-Freedom Triangular Resch Patterns with Thick-panel Origami

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0

Year Published

2022
2022
2025
2025

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 16 publications
(6 citation statements)
references
References 18 publications
0
6
0
Order By: Relevance
“…As an example of how the equations we have seen thus far can be applied to a larger crease pattern, we consider the triangle twist tessellation shown in figure 11. This was designed by Ron Resch in the 1960s [20,21] and has been studied extensively for rigid folding and metamaterial purposes [22][23][24].…”
Section: Example 45 (Resch Triangle Twist Tessellation)mentioning
confidence: 99%
See 1 more Smart Citation
“…As an example of how the equations we have seen thus far can be applied to a larger crease pattern, we consider the triangle twist tessellation shown in figure 11. This was designed by Ron Resch in the 1960s [20,21] and has been studied extensively for rigid folding and metamaterial purposes [22][23][24].…”
Section: Example 45 (Resch Triangle Twist Tessellation)mentioning
confidence: 99%
“…As a rigid folding, the Resch pattern has many degrees of freedom [24]. But if we insist on folding it with 120 rotational symmetry about the centre vertex r1, then it becomes 1-d.f.…”
Section: Equations For Symmetric Modesmentioning
confidence: 99%
“…Large-scale DMs are usually constructed by assembling similar modules with specific connecting approaches. Typical modules include scissor mechanisms (Bai et al, 2013;Sun et al, 2014) and singleloop mechanisms such as Bennett mechanisms (Chen and You, 2008;Song et al, 2017), Mycard mechanisms (Liu and Chen, 2009), Bricard mechanisms (Lee, 1996), Sarrus-like mechanisms (Chen et al, 2013;Lu et al, 2016), and also include origami patterns such as the Miura-ori pattern (Gattas et al, 2013), the waterbomb pattern (Lee et al, 2021), the Resch pattern (Yang et al, 2022), and the cuboid-twist pattern (Hull, 2014). These modules are usually connected by sharing links or kinematic pairs (Soykasap et al, 2004;Huang et al, 2021a;Zhao et al, 2009;Tian et al, 2010).…”
Section: Introductionmentioning
confidence: 99%
“…Kiper (2009) proposed several new linkages based on the Fulleroid, which can be applied to the construction of deployable polyhedral mechanisms. Yang and Chen (2018) proposed a convertible DM by appropriately configuring the movable joint, which can realize the 1-DOF transformation between a tetrahedron and a truncated tetrahedron. In addition, Chen et al (2018) proposed a 1-DOF shape transformation between two paired polyhedrons by introducing 6R spatial links.…”
Section: Introductionmentioning
confidence: 99%
“…This chapter will introduce some origami tessellations with more complexity and provide qualitative analyses of multiple boundary cases in order to further display the applicability of this boundary analysis approach. There are an infinite number of novel origami patterns that can be created by this approach, but this discussion will be rather brief and primarily limited to the Resch pattern [38] and its derivative tessellations. For simplicity, these patterns will use symmetrical side lengths and angles.…”
Section: Analysis Of Origami Tessellation Unit-cell Combinationsmentioning
confidence: 99%