Design of Sulfur Resistant Cobalt Catalysts by Boron Promotion: Atomic Scale Insights
Ali Can Kızılkaya
Abstract:The effect of boron promotion on atomic sulfur formation by hydrogen sulfide dissociation on Co(111), flat surfaces of cobalt nanoparticles, was investigated using Density Functional Theory calculations. The results show that on clean Co(111), hydrogen sulfide dissociation proceeds fast due to low activation barriers, yielding atomic sulfur on the cobalt surfaces. Boron promotion hinders the dissociation of hydrogen sulfide due to increased activation barriers. Furthermore, boron prevents the interaction of su… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.