Background: Animal-derived surfactants containing surfactant proteins B (SP-B) and C (SP-C) are used to treat respiratory distress syndrome (RDS) in preterm infants. SP-B (79 residues) plays a pivotal role in lung function and the design of synthetic lung surfactant. Super Mini-B (SMB), a 41-residue peptide based on the N- and C-domains of SP-B covalently joined with a turn and two disulfides, folds as an α-helix hairpin mimicking the properties of these domains in SP-B. Here, we studied ‘B-YL’, a 41-residue SMB variant that has its four cysteine and two methionine residues replaced by tyrosine and leucine, respectively, to test whether these hydrophobic substitutions produce a surface-active, α-helix hairpin.
Methods: Structure and function of B-YL and SMB in surfactant lipids were compared with CD and FTIR spectroscopy, and surface activity with captive bubble surfactometry and in lavaged, surfactant-deficient adult rabbits.
Results: CD and FTIR spectroscopy of B-YL in surfactant lipids showed secondary structures compatible with peptide folding as an α-helix hairpin, similar to SMB in lipids. B-YL in surfactant lipids demonstrated excellent
in vitro surface activity and good oxygenation and dynamic compliance in lavaged, surfactant-deficient adult rabbits, suggesting that the four tyrosine substitutions are an effective replacement for the disulfide-reinforced helix-turn of SMB. Here, the B-YL fold may be stabilized by a core of clustered tyrosines linking the N- and C-helices through non-covalent interactions involving aromatic rings.
Conclusions: ‘Sulfur-free’ B-YL forms an amphipathic helix-hairpin in surfactant liposomes with high surface activity and is functionally similar to SMB and native SP-B. The removal of the cysteines makes B-YL more feasible to scale up production for clinical application. B-YL’s possible resistance against free oxygen radical damage to methionines by substitutions with leucine provides an extra edge over SMB in the treatment of respiratory failure in preterm infants with RDS.