Tensegrity structures are composed of cables and struts in a pre-stressed self-equilibrium. Although tensegrity first appeared in the 1950s, it is seldom used in civil engineering. This paper focuses on the design aspects of a deployable tensegrity-hollow-rope footbridge. Deployment is usually not a critical design case for traditional deployable structures. However, for tensegrity systems deployment may be critical due to the actuation required. In this paper, deployment is investigated in a general design framework. The influence of clustered (continuous) cables and spring elements in statics and dynamics is studied. Finally, actuation schemes are explored to identify cases where deployment becomes a critical design case. For this configuration, deployment is a critical design case when the structure has spring elements and continuous cables.