In the process of applying linear quadratic regulator (LQR) to solve aerial vehicle reentry reference trajectory guidance, to obtain better profile-following performance, the parameters of the aerial vehicle system can be used to calculate weighting matrices according to the Bryson principle. However, the traditional method is not applicable to various disturbances in hypersonic vehicles (HSV) which have particular dynamic characteristics. By calculating the weighting matrices constructed based on Bryson principle using time-varying parameters, a novel time-varying LQR design method is proposed to deal with the various disturbances in HSV reentry profile-following. Different from the previous approaches, the current states of the flight system are employed to calculate the parameters in weighting matrices. Simulation results are given to demonstrate that using the proposed approach in this chapter, performance of HSV profile-following can be improved significantly, and stronger robustness against different disturbances can be obtained.