The reformations of the electrical power sector have resulted in very dynamic and competitive market that has changed many elements of the power industry. Excessive demand of energy, depleting the fossil fuel reserves of planet and releasing the toxic air pollutant, has been causing harm to earth habitats. In this new situation, insufficiency of energy supplies, rising power generating costs, high capital cost of renewable energy equipment, environmental concerns of wind power turbines, and ever-increasing demand for electrical energy need efficient economic dispatch. The objective function in practical economic dispatch (ED) problem is nonlinear and non-convex, with restricted equality and inequality constraints, and traditional optimization methods are incapable of resolving such non-convex problems. Over the recent decade, meta-heuristic optimization approaches have acquired enormous reputation for obtaining a solution strategy for such types of ED issues. In this paper, a novel soft computing optimization technique is proposed for solving the dynamic economic dispatch problem (DEDP) of complex non-convex machines with several constraints. Our premeditated framework employs the genetic algorithm (GA) as an initial optimizer and sequential quadratic programming (SQP) for the fine tuning of the pre-optimized run of GA. The simulation analysis of GA-SQP performs well by acquiring less computational cost and finite time of execution, while providing optimal generation of powers according to the targeted power demand and load, whereas subject to valve point loading effect (VPLE) and multiple fueling option (MFO) constraints. The adequacy of the presented strategy concerning accuracy, convergence as well as reliability is verified by employing it on ten benchmark case studies, including non-convex IEEE bus system at the same time also considering VPLE of thermal power plants. The potency of designed optimization seems more robust with fast convergence rate while evaluating the hard bounded DEDP. Our suggested hybrid method GA-SQP converges to achieve the best optimal solution in a confined environment in a limited number of simulations. The simulation results demonstrate applicability and adequacy of the given hybrid schemes over conventional methods.