Drug delivery systems (DDS) have improved therapeutic agent administration by enhancing efficacy and patient compliance while minimizing side effects. They enable targeted delivery, controlled release, and improved bioavailability. Transdermal drug delivery systems (TDDS) offer non-invasive medication administration and have evolved to include methods such as chemical enhancers, iontophoresis, microneedles (MN), and nanocarriers. MN technology provides innovative solutions for chronic metabolic diseases like diabetes and obesity using various MN types. For diabetes management, MNs enable continuous glucose monitoring, diabetic wound healing, and painless insulin delivery. For obesity treatment, MNs provide sustained transdermal delivery of anti-obesity drugs or nanoparticles (NPs). Hybrid systems integrating wearable sensors and smart materials enhance treatment effectiveness and patient management. Nanotechnology has advanced drug delivery by integrating nano-scaled materials like liposomes and polymeric NPs with MNs. In diabetes management, glucose-responsive NPs facilitate smart insulin delivery. At the same time, lipid nanocarriers in dissolving MNs enable extended release for obesity treatment, enhancing drug stability and absorption for improved metabolic disorder therapies. DDS for obesity and diabetes are advancing toward personalized treatments using smart MN enhanced with nanomaterials. These innovative approaches can enhance patient outcomes through precise drug administration and real-time monitoring. However, widespread implementation faces challenges in ensuring biocompatibility, improving technologies, scaling production, and obtaining regulatory approval. This review will present recent advances in developing and applying nanomaterial-enhanced MNs for diabetes and obesity management while also discussing the challenges, limitations, and future perspectives of these innovative DDS.