Reducing the variance between expectation and execution of software processes is an essential activity for software development, in which the Causal Analysis is a conventional means of detecting problems in the software process. However, significant effort may be required to identify the problems of software development. Defect prevention prevents the problems from occurring, thus lowering the effort required in defect detection and correction. The prediction model is a conventional means of predicting the problems of subsequent process actions, where the prediction model can be built from the performed actions. This study proposes a novel approach that applies the Intertransaction Association Rule Mining techniques to the records of performed actions in order to discover the patterns that are likely to cause high severity defects. The discovered patterns can then be applied to predict the subsequent actions that may result in high severity defects.