Coupling of excitations between organic fluorophores in J-aggregates leads to coherent delocalization of excitons across multiple molecules, resulting in materials with high extinction coefficients, long-range exciton transport, and, in particular, short radiative lifetimes. Despite these favorable optical properties, uses of J-aggregates as high-speed light sources have been hindered by their low photoluminescence quantum yields. Here, we take a bottom-up approach to design a novel J-aggregate system with a large extinction coefficient, a high quantum yield and a short lifetime. To achieve this goal, we first select a J-aggregating cyanine chromophore and reduce its nonradiative pathways by rigidifying the backbone of the cyanine dye. The resulting conformationally-restrained cyanine dye exhibits strong absorbance at 530 nm and fluorescence at 550 nm with 90% quantum yield and 2.3 ns lifetime. We develop optimal conditions for the self-assembly of highly emissive J-aggregates. Cryogenic transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS) reveal micron-scale extended structures with 2D sheet-like morphology, indicating long-range structural order. These novel J-aggregates have a strong red-shifted absorption at 600 nm, resonant fluorescence with no Stokes shift, 50% quantum yield, and 220 ps lifetime at room temperature. We further stabilize these aggregates in a glassy sugar matrix and study their excitonic behavior using 2 temperature-dependent absorption and fluorescence spectroscopy. These temperaturedependent studies confirm J-type excitonic coupling and superradiance. Our results have implications for the development of a new generation of organic fluorophores that combine high speed, high quantum yield and solution processing.