A structural analysis of the International Thermonuclear Experimental Reactor (ITER) vacuum vessel's lower port region was presented by means of a finite element analysis method. The purpose is to evaluate the stress and displacement level on this structure under various combinations of five designed loads, including the gravity of the vacuum vessel, seismic loads, electromagnetic loads, and possible pressure loads to ensure structural safety. The cyclic symmetry finite element model of this structure was developed by using ANSYS code. The results showed that the maximum stress does not exceed the allowable value for any of the load combinations according to ASME code and the nine vacuum vessel (VV) supports have the ability to sustain the entire VV and in vessel-components and withstand load combinations under both normal as well as off-normal operation conditions. Stress mainly concentrates on the connecting region of the VV support and lower port stub extension.