Today, the explosive growth of Multiple Input Multiple Output (MIMO) systems has resulted in a high data rate and consequently permits the operation of a variety of applications. The MIMO networks are multiparameter systems, so the choice of a suitable MIMO network in wireless communications is a complex issue. In this paper, a multi-factoring evaluation and comparison framework was introduced and applied to MIMO systems. The proposed methodology is based on a general distance function, named the General Evaluation Factor. This method was applied to MIMO networks that operate over Rayleigh fading channels with different antenna nodes and spacing. The implementation of this method was based on different capacities and cost values. Nevertheless, while only two factors (capacity and cost) were studied in this paper, the proposed approach was able to incorporate additional performance metrics that might be essential for many wireless system designs. The presented framework and results aspire to be useful for network engineering, especially when finding a balance between contradictory factors (e.g. cost and performance metrics) on MIMO networks.