Composite materials have found widespread applications in the automotive, aerospace, and building industries. Several components are joined together for these applications, by some temporary or permanent bonding approach. The increased use of different materials and their combinations such as composites makes the whole joining process something to be thoroughly considered before continuing. Several aspects need to be studied before spending significant time and financial resources. Considering these challenges in this paper we have provided a review of the investigations that have been made on fiber-reinforced composite joints. The level of development in various types of joints and joining techniques such as mechanical bonding, adhesive bonding, and fusion bonding along with their advantages and disadvantages is given. Several parameters affecting the performance of composite joints such as joint configuration, material selection and properties, geometric parameters, dominating failure modes, and environmental factors are described briefly. To verify the performance of composite joints, guidance on joint testing is given (both destructive and non-destructive).