Calix[4]arene‐based molecules hold great promise as candidate sensors and storage materials for nitric oxide (NO), owing to their unprecedented binding affinity for NO. However, the structure of calix[4]arene is complicated by the availability of four possible conformers: 1,3‐alternate, 1,2‐alternate, cone, and partial cone (paco). Whilst complexes of NO with several of these conformers have previously been established, the 1,2‐alternate conformer complex, that is, [1,2‐alter⋅NO]+, has not been previously reported. Herein, we determine the crystal structure of the NO complex with the 1,2‐alternate conformer for the first time. In addition, we have also found that the 1,2‐alternate and 1,3‐alternate conformers can combine with two NO molecules to form stable bis(nitric oxide) complexes. These new complexes, which exhibit remarkable binding capacity for the construction of NO‐storage molecules, were characterized by using X‐ray crystallography and NMR, IR, and UV/Vis spectroscopy. These findings will extend our understanding of the interactions between nitric oxide and cofacially and non‐cofacially arrayed aromatic rings, and we expect them to aid in the design and development of new supramolecular sensors and storage materials for NO with high capacity and efficacy.