Electrocatalysts with strong stability and high electrocatalytic activity have received increasing interest for oxygen reduction reactions (ORRs) in the cathodes of energy storage and conversion devices, such as fuel cells and metal-air batteries. However, there are still several bottleneck problems concerning stability, efficiency, and cost, which prevent the development of ORR catalysts. Herein, we prepared bimetal FeCo alloy nanoparticles wrapped in Nitrogen (N)-doped graphitic carbon, using Co-Fe Prussian blue analogs (Co3[Fe(CN)6]2, Co-Fe PBA) by the microwave-assisted carbon bath method (MW-CBM) as a precursor, followed by dielectric barrier discharge (DBD) plasma treatment. This novel preparation strategy not only possessed a fast synthesis rate by MW-CBM, but also caused an increase in defect sites by DBD plasma treatment. It is believed that the co-existence of Fe/Co-N sites, rich active sites, core-shell structure, and FeCo alloys could jointly enhance the catalytic activity of ORRs. The obtained catalyst exhibited a positive half-wave potential of 0.88 V vs. reversible hydrogen electrode (RHE) and an onset potential of 0.95 V vs. RHE for ORRs. The catalyst showed a higher selectivity and long-term stability than Pt/C towards ORR in alkaline media.