The goal of this work is to validate the existing plasma spray mathematical models, using a calculation method and the comparison with experimental data, in order to determine their validity. A preliminary evaluation of the adhesion based on the velocity and temperature of the particles is useful to be calculated by using the mathematical model. Given the thermal-physical properties and chemical composition of a Fe-based amorphous X-5 powder, a modified model was suggested. For comparison, a series of experiments using plasma spraying of the X-5 powder were conducted. The significance of the current study consists of the model validation by using the data of the plasma spraying of the Fe-based amorphous material as a potential substitution for saving production costs by using ordinary air as the plasma generation gas. The findings show the discrepancy between the models and the experimental results. The prediction of adhesion using the mathematical models does not cover essential parameters such as the enthalpy of the particle stream. It is necessary to improve the mathematical models, including the modified one, based on the experiment results, with different pairs of particles and substrate materials. The proposed formula is applicable during the preliminary design of the spray process and the development of a new torch construction.