The development of in vivo imaging protocols to reliably track transplanted cells or to report on gene expression is critical for treatment monitoring in (pre)clinical cell and gene therapy protocols. Therefore, we evaluated the potential of lentiviral vectors (LVs) and adeno-associated viral vectors (AAVs) to express the magnetic resonance imaging (MRI) reporter gene ferritin in the rodent brain. First, we compared the induction of background MRI contrast for both vector systems in immune-deficient and immune-competent mice. LV injection resulted in hypointense (that is, dark) changes of T 2 /T 2 * (spin-spin relaxation time)-weighted MRI contrast at the injection site, which can be partially explained by an inflammatory response against the vector injection. In contrast to LVs, AAV injection resulted in reduced background contrast. Moreover, AAV-mediated ferritin overexpression resulted in significantly enhanced contrast to background on T 2 *-weighted MRI. Although sensitivity associated with the ferritin reporter remains modest, AAVs seem to be the most promising vector system for in vivo MRI reporter gene imaging. Gene Therapy (2011)
INTRODUCTIONThe development of non-invasive imaging methods that can reliably report on therapeutic cell transplantation and/or gene expression is a critical step in the establishment of gene therapy protocols, both for clinical and for research applications. Several molecular imaging modalities are available that enable non-invasive and repeated imaging of gene expression in targeted cells in living organisms, thereby reducing the number of laboratory animals and reducing the inter-animal variability at the preclinical level. Among these are radionuclide imaging techniques such as single-photon emission computed tomography (SPECT) and positron emission tomography (PET), optical imaging methods including fluorescence imaging and bioluminescence imaging (BLI), magnetic resonance imaging (MRI) and spectroscopy, ultrasound and X-ray-based methods (for a review, see the studies by Massoud and Gambhir 1 and Deroose et al. 2 ). Apart from optical imaging methods, molecular imaging technologies using these imaging modalities have the advantage of being translatable to a clinical setting.When comparing imaging modalities, BLI, PET and SPECT provide high sensitivity but low resolution, whereas MRI can reach near-cellular resolution, 3-6 which makes MRI ideally suited to provide information on the location and migration of targeted cells in vivo.