Recent advances in additive manufacturing enable redesigning material morphology on nano-, micro-, and meso-scale, for achieving an enhanced functionality on the macro-scale. From non-planar and flexible electronic circuits, through biomechanically realistic surgical models, to shoe soles individualized for the user comfort, multiple scientific and technological areas undergo material-property redesign and enhancement enabled by 3D printing. Fiber-device technology is currently entering such a transformation. In this paper, we review the recent advances in adopting 3D printing for direct digital manufacturing of fiber preforms with complex cross-sectional architectures designed for the desired thermally drawn fiber-device functionality. Subsequently, taking a recursive manufacturing approach, such fibers can serve as a raw material for 3D printing, resulting in macroscopic objects with enhanced functionalities, from optoelectronic to bio-functional, imparted by the fiber-devices properties.
Graphic abstract