2023
DOI: 10.3390/s23020847
|View full text |Cite
|
Sign up to set email alerts
|

Designing a Proximal Sensing Camera Acquisition System for Vineyard Applications: Results and Feedback on 8 Years of Experiments

Abstract: The potential of image proximal sensing for agricultural applications has been a prolific scientific subject in the recent literature. Its main appeal lies in the sensing of precise information about plant status, which is either harder or impossible to extract from lower-resolution downward-looking image sensors such as satellite or drone imagery. Yet, many theoretical and practical problems arise when dealing with proximal sensing, especially on perennial crops such as vineyards. Indeed, vineyards exhibit ch… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(1 citation statement)
references
References 37 publications
0
1
0
Order By: Relevance
“…To overcome the criticality highlighted in the current research, future works will explore (a) new models with larger input layers, (b) how to overcome the classical leaf image classification approach presented in this paper by experimenting new training methods, such as Triplet Loss (Dong and Shen, 2018;Ge, 2018) which allow us to build different feature spaces and (c) hybrid model architectures that include, in addition, grapes and shoot images, and other information such as day of the year, geographical coordinates or weather variables to be used as predictors or to implement a posteriori heuristics. Moreover, considering the recent innovations and developments in autonomous robotic systems in viticulture (Moreno and Andújar, 2023;Rançon et al, 2023) it is foreseeable that leaf images of a large number of varieties could be taken in a short time. This would make it possible to analyse a significant number of cultivated varieties and to improve and generalize the results of the proposed approach.…”
Section: Discussionmentioning
confidence: 99%
“…To overcome the criticality highlighted in the current research, future works will explore (a) new models with larger input layers, (b) how to overcome the classical leaf image classification approach presented in this paper by experimenting new training methods, such as Triplet Loss (Dong and Shen, 2018;Ge, 2018) which allow us to build different feature spaces and (c) hybrid model architectures that include, in addition, grapes and shoot images, and other information such as day of the year, geographical coordinates or weather variables to be used as predictors or to implement a posteriori heuristics. Moreover, considering the recent innovations and developments in autonomous robotic systems in viticulture (Moreno and Andújar, 2023;Rançon et al, 2023) it is foreseeable that leaf images of a large number of varieties could be taken in a short time. This would make it possible to analyse a significant number of cultivated varieties and to improve and generalize the results of the proposed approach.…”
Section: Discussionmentioning
confidence: 99%