Concurrent program refinement algebra provides a suitable basis for supporting mechanised reasoning about shared-memory concurrent programs in a compositional manner, for example, it supports the rely/guarantee approach of Jones. The algebra makes use of a synchronous parallel operator motivated by Aczel's trace model of concurrency and with similarities to Milner's SCCS. This paper looks at defining a form of fairness within the program algebra. The encoding allows one to reason about the fair execution of a single process in isolation as well as define fair-parallel in terms of a base parallel operator, of which no fairness properties are assumed. An algebraic theory to support fairness and fair-parallel is developed.