In today’s perishable products industry, the importance of sustainability as a critical consideration has significantly increased. This study focuses on the design of a sustainable perishable product supply chain network (SPPSCN), considering the factors of economics cost, environmental impacts, and social responsibility. The proposed model is a comprehensive production–location–inventory problem optimization framework that addresses multiple objectives, echelons, products, and periods. To solve this complex problem, we introduce three hybrid metaheuristic algorithms: bat algorithm (BA), shuffled frog leaping algorithm (SFLA), and cuckoo search (CS) algorithm, all hybrid with variable neighbourhood search (VNS). Sensitivity to input parameters is accounted for using the Taguchi method to tune these parameters. Additionally, we evaluate and compare these approaches among themselves and benchmark their results against a reference method, a hybrid genetic algorithm (GA) with VNS. The quality of the Pareto frontier is evaluated by six metrics for test problems. The results highlight the superior performance of the bat algorithm with variable neighbourhood search. Furthermore, a sensitivity analysis is conducted to evaluate the impact of key model parameters on the optimal objectives. It is observed that an increase in demand has a nearly linear effect on the corresponding objectives. Moreover, the impact of extending raw material shelf life and product shelf life on these objectives is limited to a certain range. Beyond a certain threshold, the influence becomes insignificant.